English | 简体中文 | 繁體中文 | Русский язык | Français | Español | Português | Deutsch | 日本語 | 한국어 | Italiano | بالعربية
La forma dell'array è il numero di elementi in ogni dimensione.
Stampare la forma di un array 2-D:
import numpy as np arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) print(arr.shape)
Risultato dell'esecuzione
(2, 4)
L'esempio precedente restituisce (2, 4), il che significa che l'array ha 2 dimensioni, ciascuna con 4 elementi.
利用 ndmin 使用值 1,2,3,4 的向量创建有 5 个维度的数组,并验证最后一个维度的值为 4:
import numpy as np arr = np.array([1, 2, 3, 4], ndmin=5) print(arr) print('shape of array :', arr.shape)
Risultato dell'esecuzione
[[[[[1 2 3 4]]]]] shape of array : (1, 1, 1, 1, 4)
每个索引处的整数表明相应维度拥有的元素数量。
上例中的索引 4,我们的值为 4,因此可以说第 5 个 (4 + 1 th) 维度有 4 个元素。
数组的形状是每个维中元素的数量。通过修改数组形状,我们可以添加或删除维度或更改每个维度中的元素数量。
将以下具有 12 个元素的 1-D 数组转换为 2-D 数组。
最外面的维度将有 4 个数组,每个数组包含 3 个元素:
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(4, 3) print(newarr)
Risultato dell'esecuzione
[[ 1 2 3] [ 4 5 6] [ 7 8 9] [10 11 12]]
将以下具有 12 个元素的 1-D 数组转换为 3-D 数组。
最外面的维度将具有 2 个数组,其中包含 3 个数组,每个数组包含 2 个元素:
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(2, 3, 2) print(newarr)
Risultato dell'esecuzione
[[[[ 1 2] [ 3 4] [ 5 6]] [[ 7 8] [ 9 10] [11 12]]]
是的,只要重塑所需的元素在两种形状中均相等。
我们可以将 8 元素 1D 数组重塑为 2 行 2D 数组中的 4 个元素,但是我们不能将其重塑为 3 元素 3 行 2D 数组,因为这将需要 3x3 = 9 个元素。
尝试将具有 8 个元素的 1D 数组转换为每个维度中具有 3 个元素的 2D 数组(将产生错误):
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) newarr = arr.reshape(3, 3) print(newarr)
Risultato dell'esecuzione
Traceback (most recent call last): File "test.py", line 5, in
Puoi utilizzare una dimensione 'sconosciuta'.
Questo significa che non devi specificare un numero esatto per una delle dimensioni nel metodo reshape.
Passare -1 come valore, NumPy calcolerà questo numero per te.
Convertire un array 1D di 8 elementi in un array 3D di 2x2 elementi:
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) newarr = arr.reshape(2, 2, -1) print(newarr)
Risultato dell'esecuzione
[[[1 2] [3 4]] [[5 6] [7 8]]]
Il livellamento degli array (Flattening the arrays) è il processo di conversione di un array multidimensionale in un array 1D.
Possiamo farlo utilizzando reshape(-1).
Convertire un array in un array 1D:
import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6]]) newarr = arr.reshape(-1) print(newarr)
Risultato dell'esecuzione
[1 2 3 4 5 6]
Ci sono molte funzioni disponibili per modificare la forma degli array flatten, ravel, e per riorganizzare gli elementi rot90, flip, fliplr, flipud, ecc. Queste funzioni appartengono alla parte intermedia e avanzata di NumPy.