English | 简体中文 | 繁體中文 | Русский язык | Français | Español | Português | Deutsch | 日本語 | 한국어 | Italiano | بالعربية
0x01.Introduzione
Quando si parla di iniezione di Dll, si possono immediatamente pensare a molti metodi, come l'uso di thread remoti, Apc, ecc., qui faccio una somma dell'apprendimento dell'iniezione di Dll a livello di Ring3.
Ho diviso i metodi di iniezione in sei categorie, ovvero: 1. Creare un nuovo thread, 2. Modificare lo stato di contesto del thread, modificare i registri, 3. Inserire nella coda Apc, 4. Modificare il registro, 5. Hook dei messaggi della finestra, 6. Implementazione remota manuale di LoadLibrary.
Allora iniziamo il nostro viaggio di apprendimento!
0x02.Preparazione
Nella parte del programma che riguarda l'iniezione, naturalmente è essenziale elevare i permessi del programma, e qui fornisco due funzioni encapsulate che possono essere utilizzate per elevare i permessi. La prima è quella di modificare i permessi tramite il token di permesso; la seconda è quella di modificare i permessi tramite la funzione non documentata RtlAdjustPrivilege esportata da ntdll.dll.
// Passo il parametro SE_DEBUG_NAME per elevare i permessi di debug BOOL GrantPriviledge(WCHAR* PriviledgeName) { TOKEN_PRIVILEGES TokenPrivileges, OldPrivileges; DWORD dwReturnLength = sizeof(OldPrivileges); HANDLE TokenHandle = NULL; LUID uID; // Apri il token di privilegi if (!OpenThreadToken(GetCurrentThread(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, FALSE, &TokenHandle)) { if (GetLastError() != ERROR_NO_TOKEN) { return FALSE; } if (!OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &TokenHandle)) { return FALSE; } } if (!LookupPrivilegeValue(NULL, PriviledgeName, &uID)) // 通过权限名称查找uID { CloseHandle(TokenHandle); return FALSE; } TokenPrivileges.PrivilegeCount = 1; // 要提升的权限个数 TokenPrivileges.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED; // 动态数组,数组大小根据Count的数目 TokenPrivileges.Privileges[0].Luid = uID; // 在这里我们进行调整权限 if (!AdjustTokenPrivileges(TokenHandle, FALSE, &TokenPrivileges, sizeof(TOKEN_PRIVILEGES), &OldPrivileges, &dwReturnLength)) { CloseHandle(TokenHandle); return FALSE; } // 成功了 CloseHandle(TokenHandle); return TRUE; }
Siccome dobbiamo注入Dll nel processo di destinazione, ottenere l'Id del processo di destinazione è essenziale, perché OpenProcess verrà sicuramente utilizzato, e qui ho fornito anche due metodi per ottenere l'Id del processo tramite il nome dell'immagine del processo di destinazione. Il primo è il più comune, utilizzare TlHelp per creare uno snapshot del processo del sistema; il secondo è utilizzare le funzioni di enumerazione Psapi, ma questo metodo che ho implementato ha dei difetti, non può ottenere l'Id del processo a 64 bit su sistema a 32 bit.
// Utilizzo delle funzioni ToolHelp #include <TlHelp32.h> BOOL GetProcessIdByProcessImageName(IN PWCHAR wzProcessImageName, OUT PUINT32 ProcessId) { HANDLE ProcessSnapshotHandle = INVALID_HANDLE_VALUE; PROCESSENTRY32 ProcessEntry32 = { 0 }; ProcessEntry32.dwSize = sizeof(PROCESSENTRY32); // Inizializza la struttura PROCESSENTRY32 ProcessSnapshotHandle = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0); // Fornisce uno snapshot di tutti i processi del sistema if (ProcessSnapshotHandle == INVALID_HANDLE_VALUE) { return FALSE; } if (Process32First(ProcessSnapshotHandle, &ProcessEntry32)) // Trova il primo { do { if (lstrcmpi(ProcessEntry32.szExeFile, wzProcessImageName) == 0) // Senza distinzione tra maiuscole e minuscole { *ProcessId = ProcessEntry32.th32ProcessID; break; } } while (Process32Next(ProcessSnapshotHandle, &ProcessEntry32)); } CloseHandle(ProcessSnapshotHandle); ProcessSnapshotHandle = INVALID_HANDLE_VALUE; if (*ProcessId == 0) { return FALSE; } return TRUE; } // Utilizzare le funzioni di enumerazione della serie Psapi #include <Psapi.h> BOOL GetProcessIdByProcessImageName(IN PWCHAR wzProcessImageName, OUT PUINT32 ProcessId) { DWORD dwProcessesId[1024] = { 0 }; DWORD BytesReturned = 0; UINT32 ProcessCount = 0; // Ottenere tutti gli ID dei processi dell'attuale sistema operativo e salvare l'array dwProcessesId if (!EnumProcesses(dwProcessesId, sizeof(dwProcessesId), &BytesReturned)) { return FALSE; } ProcessCount = BytesReturned / sizeof(DWORD); // Eseguire for (INT i = 0; i < ProcessCount; i++) { HMODULE ModuleBase = NULL; WCHAR wzModuleBaseName[MAX_PATH] = { 0 }; HANDLE ProcessHandle = OpenProcess(PROCESS_ALL_ACCESS, FALSE, dwProcessesId[i]); if (ProcessHandle == NULL) { continue; } if (EnumProcessModulesEx(ProcessHandle, &ModuleBase, sizeof(HMODULE), &BytesReturned, LIST_MODULES_ALL)) { // Ottenere il nome del primo modulo del processo GetModuleBaseName(ProcessHandle, ModuleBase, wzModuleBaseName, MAX_PATH * sizeof(WCHAR)); } CloseHandle(ProcessHandle); ProcessHandle = NULL; if (lstrcmpi(wzModuleBaseName, wzProcessImageName) == 0) // Non-case-sensitive { *ProcessId = dwProcessesId[i]; break; } } if (*ProcessId == 0) { return FALSE; } return TRUE; }
Poiò come nell'inserimento nella coda Apc, sospendere i thread, ecc., è necessario eseguire operazioni sulle thread del processo obiettivo, quindi ottenere l'Id della thread è anche necessario. Allo stesso modo, ho fornito due metodi per ottenere l'Id della thread tramite l'Id del processo. Il primo utilizza ancora TlHelp per creare una schermata rapida dei thread del sistema, memorizzando tutti i thread nel modello vector (per l'iniezione Apc); il secondo utilizza la tecnica ZwQuerySystemInformation, che enumera le informazioni sui processi del sistema e restituisce solo un Id della thread, che è sufficiente.
// 枚举指定进程Id的所有线程,压入模板中 #include <vector> #include <TlHelp32.h> using namespace std; BOOL GetThreadIdByProcessId(IN UINT32 ProcessId, OUT vector<UINT32>& ThreadIdVector) { HANDLE ThreadSnapshotHandle = NULL; THREADENTRY32 ThreadEntry32 = { 0 }; ThreadEntry32.dwSize = sizeof(THREADENTRY32); ThreadSnapshotHandle = CreateToolhelp32Snapshot(TH32CS_SNAPTHREAD, 0); // 给系统所有的线程快照 if (ThreadSnapshotHandle == INVALID_HANDLE_VALUE) { return FALSE; } if (Thread32First(ThreadSnapshotHandle, &ThreadEntry32)) { do { if (ThreadEntry32.th32OwnerProcessID == ProcessId) { ThreadIdVector.emplace_back(ThreadEntry32.th32ThreadID); // 把该进程的所有线程id压入模板 } } while (Thread32Next(ThreadSnapshotHandle, &ThreadEntry32)); } CloseHandle(ThreadSnapshotHandle); ThreadSnapshotHandle = NULL; return TRUE; } // ZwQuerySystemInformation+SystemProcessInformation typedef NTSTATUS(NTAPI * pfnZwQuerySystemInformation)( IN SYSTEM_INFORMATION_CLASS SystemInformationClass, OUT PVOID SystemInformation, IN UINT32 SystemInformationLength, OUT PUINT32 ReturnLength OPCIONALE); BOOL GetThreadIdByProcessId(IN UINT32 ProcessId, OUT PUINT32 ThreadId) { BOOL bOk = FALSE; NTSTATUS Status = 0; PVOID BufferData = NULL; PSYSTEM_PROCESS_INFO spi = NULL; pfnZwQuerySystemInformation ZwQuerySystemInformation = NULL; ZwQuerySystemInformation = (pfnZwQuerySystemInformation)GetProcAddress(GetModuleHandle(L"ntdll.dll"), "ZwQuerySystemInformation"); if (ZwQuerySystemInformation == NULL) { return FALSE; } BufferData = malloc(1024 * 1024); if (!BufferData) { return FALSE; } // 在QuerySystemInformation系列函数中,查询SystemProcessInformation时,必须提前申请好内存,不能先查询得到长度再重新调用 Status = ZwQuerySystemInformation(SystemProcessInformation, BufferData, 1024 * 1024, NULL); if (!NT_SUCCESS(Status)) { free(BufferData); return FALSE; } spi = (PSYSTEM_PROCESS_INFO)BufferData; // 遍历进程,找到我们的目标进程 while (TRUE) { bOk = FALSE; if (spi->UniqueProcessId == (HANDLE)ProcessId) { bOk = TRUE; break; } else if (spi->NextEntryOffset) { spi = (PSYSTEM_PROCESS_INFO)((PUINT8)spi + spi->NextEntryOffset); } else { break; } } if (bOk) { for (INT i = 0; i < spi->NumberOfThreads; i++) { // Esce con l'Id della thread trovato *ThreadId = (UINT32)spi->Threads[i].ClientId.UniqueThread; break; } } if (BufferData != NULL) { free(BufferData); } return bOk; }
Beh, fino ad ora, le preparazioni preliminari sono quasi completate, quindi possiamo iniziare con il tema principale!
0x03. Metodo di iniezione uno -- Creare un nuovo thread
Creare un nuovo thread, ossia creare un thread nel processo target per servirci, e ci sono tre metodi che ho trovato per creare un thread: 1.CreateRemoteThread; 2.NtCreateThreadEx; 3.RtlCreateUserThread.
L'idea di base è: 1. richiedere memoria nello spazio di memoria del processo target; 2. scrivere il percorso completo del Dll nella memoria appena richiesta; 3. creare un nuovo thread per eseguire LoadLibrary, completando così l'iniezione del Dll.
ps: qui si utilizza direttamente l'indirizzo di LoadLibrary ottenuto dal proprio modulo kernel32 export table, perché di solito, tutti i processi caricano questi sistemi library all'indirizzo memorizzato nel sistema!
Poiché il solo differenza tra le funzioni utilizzate per creare il thread è che, se liberiamo un passo di creazione del thread e blocciamo gli altri due, il successo è garantito, qui ho liberato NtCreateThreadEx.
typedef NTSTATUS(NTAPI* pfnNtCreateThreadEx) ( OUT PHANDLE hThread, IN ACCESS_MASK DesiredAccess, IN PVOID ObjectAttributes, IN HANDLE ProcessHandle, IN PVOID lpStartAddress, IN PVOID lpParameter, IN ULONG Flags, IN SIZE_T StackZeroBits, IN SIZE_T SizeOfStackCommit, IN SIZE_T SizeOfStackReserve, OUT PVOID lpBytesBuffer); #define NT_SUCCESS(x) ((x) >= 0) typedef struct _CLIENT_ID { HANDLE UniqueProcess; HANDLE UniqueThread; } CLIENT_ID, *PCLIENT_ID; typedef NTSTATUS(NTAPI * pfnRtlCreateUserThread)( IN HANDLE ProcessHandle, IN PSECURITY_DESCRIPTOR SecurityDescriptor OPTIONAL, IN BOOLEAN CreateSuspended, IN ULONG StackZeroBits OPTIONAL, IN SIZE_T StackReserve OPTIONAL, IN SIZE_T StackCommit OPTIONAL, IN PTHREAD_START_ROUTINE StartAddress, IN PVOID Parameter OPTIONAL, OUT PHANDLE ThreadHandle OPTIONAL, OUT PCLIENT_ID ClientId OPTIONAL); BOOL InjectDll(UINT32 ProcessId) { HANDLE ProcessHandle = NULL; ProcessHandle = OpenProcess(PROCESS_ALL_ACCESS, FALSE, ProcessId); // 在对方进程空间申请内存,存储Dll完整路径 UINT32 DllFullPathLength = (strlen(DllFullPath) + 1); PVOID DllFullPathBufferData = VirtualAllocEx(ProcessHandle, NULL, DllFullPathLength, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE); if (DllFullPathBufferData == NULL) { CloseHandle(ProcessHandle); return FALSE; } // 将DllFullPath写进刚刚申请的内存中 SIZE_T ReturnLength; BOOL bOk = WriteProcessMemory(ProcessHandle, DllFullPathBufferData, DllFullPath, strlen(DllFullPath) + 1, &ReturnLength); LPTHREAD_START_ROUTINE LoadLibraryAddress = NULL; HMODULE Kernel32Module = GetModuleHandle(L"Kernel32"); LoadLibraryAddress = (LPTHREAD_START_ROUTINE)GetProcAddress(Kernel32Module, "LoadLibraryA"); pfnNtCreateThreadEx NtCreateThreadEx = (pfnNtCreateThreadEx)GetProcAddress(GetModuleHandle(L"ntdll.dll"), "NtCreateThreadEx"); if (NtCreateThreadEx == NULL) { CloseHandle(ProcessHandle); return FALSE; } HANDLE ThreadHandle = NULL; // 0x1FFFFF #define THREAD_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED | SYNCHRONIZE | 0xFFFF) NtCreateThreadEx(&ThreadHandle, 0x1FFFFF, NULL, ProcessHandle, (LPTHREAD_START_ROUTINE)LoadLibraryAddress, DllFullPathBufferData, FALSE, NULL, NULL, NULL, NULL); /* pfnRtlCreateUserThread RtlCreateUserThread = (pfnRtlCreateUserThread)GetProcAddress(GetModuleHandle(L"ntdll.dll"), "RtlCreateUserThread"); HANDLE ThreadHandle = NULL; NTSTATUS Status = RtlCreateUserThread(ProcessHandle, NULL, FALSE, 0, 0, 0, LoadLibraryAddress, DllFullPathBufferData, &ThreadHandle, NULL); */ /* HANDLE ThreadHandle = CreateRemoteThread(ProcessHandle, NULL, 0, LoadLibraryAddress, DllFullPathBufferData, 0, NULL); // CreareThreadRemoto funzione */ if (ThreadHandle == NULL) { CloseHandle(ProcessHandle); return FALSE; } if (WaitForSingleObject(ThreadHandle, INFINITE) == WAIT_FAILED) { return FALSE; } CloseHandle(ProcessHandle); CloseHandle(ThreadHandle); return TRUE; }
0x04. Second injection method -- Set thread context
The main purpose of setting the thread context is to let a certain thread of the target process execute our code and then return to do what it should do, and our code is a string of ShellCode composed of assembly hard-coded.
This ShellCode does three things: 1. Pass the full path parameter of the Dll; 2. Call the address of the LoadLibrary function; 3. Return the original Eip or Rip.
The call instructions I have chosen are ff 15 and ff 25, in 32-bit they jump to the byte code address corresponding to the instruction after 15 (25), in 64-bit the four bytes after the 15 (25) instruction store the offset, this jump is to jump to the address stored in the calculated address, here I write the offset as 0 to facilitate calculation.
#ifdef _WIN64 // Test 64-bit dll injection, Bug fixed /* 0:019> u 0x000002b5d5f80000 000002b5`d5f80000 4883ec28 sub rsp,28h 000002b5`d5f80004 488d0d20000000 lea rcx,[000002b5`d5f8002b] 000002b5`d5f8000b ff1512000000 call qword ptr [000002b5`d5f80023] 000002b5`d5f80011 4883c428 add rsp,28h 000002b5`d5f80015 ff2500000000 jmp qword ptr [000002b5`d5f8001b] */ UINT8 ShellCode[0x100] = { 0x48,0x83,0xEC,0x28, // sub rsp ,28h 0x48,0x8D,0x0d, // [+4] lea rcx, 0x00,0x00,0x00,0x00, // [+7] DllNameOffset = [+43] - [+4] - 7 // call 跳偏移,到地址,解*号 0xff,0x15, // [+11] 0x00,0x00,0x00,0x00, // [+13] 0x48,0x83,0xc4,0x28, // [+17] add rsp,28h // jmp jump offset, to address, resolve * 0xff,0x25, // [+21] 0x00,0x00,0x00,0x00, // [+23] LoadLibraryAddressOffset // Store the original rip 0x00,0x00,0x00,0x00, // [+27] 0x00,0x00,0x00,0x00, // [+31] // Jump to loadlibrary address 0x00,0x00,0x00,0x00, // [+35] 0x00,0x00,0x00,0x00, // [+39] // Store the full path of the dll // 0x00,0x00,0x00,0x00, // [+43] // 0x00,0x00,0x00,0x00 // [+47] // ...... }; #else // Test 32-bit compatibility with the newly written Dll for repeated injection /* 0:005> u 0x00ca0000 00000000`00ca0000 60 pusha 00000000`00ca0001 9c pushfq 00000000`00ca0002 681d00ca00 push 0CA001Dh 00000000`00ca0007 ff151900ca00 call qword ptr [00000000`01940026] 00000000`00ca000d 9d popfq 00000000`00ca000e 61 popa 00000000`00ca000f ff251500ca00 jmp qword ptr [00000000`0194002a] */ UINT8 ShellCode[0x100] = { 0x60, // [+0] pusha 0x9c, // [+1] pushf 0x68, // [+2] push 0x00,0x00,0x00,0x00, // [+3] ShellCode + 0xff,0x15, // [+7] call 0x00,0x00,0x00,0x00, // [+9] LoadLibrary Addr Addr 0x9d, // [+13] popf 0x61, // [+14] popa 0xff,0x25, // [+15] jmp 0x00,0x00,0x00,0x00, // [+17] jmp eip // Indirizzo eip 0x00,0x00,0x00,0x00, // [+21] // Indirizzo di LoadLibrary 0x00,0x00,0x00,0x00, // [+25] // DllFullPath 0x00,0x00,0x00,0x00 // [+29] }; #endif
L'intero processo di iniezione è composto da questi passaggi: richiedere memoria (memoria eseguibile) nel processo di destinazione ---> riempire l'indirizzo del codice ShellCode richiesto ---> scrivere il codice ShellCode nella memoria richiesta ---> SuspendThread (sospendere il thread) ---> GetThreadContext (ottenere il contesto della thread) ---> modificare Eip o Rip del contesto al primo indirizzo del codice ShellCode ---> SetThreadContext (impostare il contesto appena modificato) ---> ResumeThread (riprendere l'esecuzione del thread).
BOOL Inject(IN UINT32 ProcessId, IN UINT32 ThreadId) { BOOL bOk = FALSE; CONTEXT ThreadContext = { 0 }; PVOID BufferData = NULL; HANDLE ThreadHandle = OpenThread(THREAD_ALL_ACCESS, FALSE, ThreadId); HANDLE ProcessHandle = OpenProcess(PROCESS_ALL_ACCESS, FALSE, ProcessId); // Prima di sospendere il thread SuspendThread(ThreadHandle); ThreadContext.ContextFlags = CONTEXT_ALL; if (GetThreadContext(ThreadHandle, &ThreadContext) == FALSE) { CloseHandle(ThreadHandle); CloseHandle(ProcessHandle); return FALSE; } BufferData = VirtualAllocEx(ProcessHandle, NULL, sizeof(ShellCode), MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE); if (BufferData != NULL) { if (LoadLibraryWAddress != NULL) { #ifdef _WIN64 // ShellCode + 43 posizion contiene il percorso completo PUINT8 v1 = ShellCode + 43; memcpy(v1, DllFullPath, (wcslen(DllFullPath) + 1) * sizeof(WCHAR)); UINT32 DllNameOffset = (UINT32)(((PUINT8)BufferData + 43) - ((PUINT8)BufferData + 4) - 7)} *(PUINT32)(ShellCode + 7) = DllNameOffset; //Inserisci l'indirizzo della funzione LoadLibrary a ShellCode + 35 *(PUINT64)(ShellCode + 35) = (UINT64)LoadLibraryWAddress; UINT32 LoadLibraryAddressOffset = (UINT32)(((PUINT8)BufferData + 35) - ((PUINT8)BufferData + 11) - 6); *(PUINT32)(ShellCode + 13) = LoadLibraryAddressOffset; //Posiziona l'indirizzo rip *(PUINT64)(ShellCode + 27) = ThreadContext.Rip; if (!WriteProcessMemory(ProcessHandle, BufferData, ShellCode, sizeof(ShellCode), NULL)) { return FALSE; } ThreadContext.Rip = (UINT64)BufferData; #else PUINT8 v1 = ShellCode + 29; memcpy((char*)v1, DllFullPath, (wcslen(DllFullPath) + 1) * sizeof(WCHAR)); //Ecco il nome del DLL da注入 *(PUINT32)(ShellCode + 3) = (UINT32)BufferData + 29; *(PUINT32)(ShellCode + 25) = LoadLibraryWAddress; //Inserisci l'indirizzo loadlibrary nel shellcode *(PUINT32)(ShellCode + 9) = (UINT32)BufferData + 25;//Modifica l'indirizzo call per ottenere l'indirizzo di memorizzazione loaddlladdr nello spazio di indirizzamento ////////////////////////////////// *(PUINT32)(ShellCode + 21) = ThreadContext.Eip; *(PUINT32)(ShellCode + 17) = (UINT32)BufferData + 21;//Modifica jmp per ottenere l'indirizzo eip originale if (!WriteProcessMemory(ProcessHandle, BufferData, ShellCode, sizeof(ShellCode), NULL)) { printf("Errore di scrittura del processo\n"); return FALSE; } ThreadContext.Eip = (UINT32)BufferData; #endif if (!SetThreadContext(ThreadHandle, &ThreadContext)) { printf("Errore di impostazione del contesto del thread\n"); return FALSE; } ResumeThread(ThreadHandle); printf("Iniezione ShellCode completata\r\n"); } } CloseHandle(ThreadHandle); CloseHandle(ProcessHandle); return TRUE; }
0x05. Inserimento nella coda Apc
L'iniezione Apc a livello di Ring3 non è molto stabile, il mio metodo è quello di forzare l'inserimento di oggetti Apc nella coda Apc UserMode di tutti i thread del processo target (i thread hanno due code Apc: Kernel e User) e aspettare che esegua la funzione registrata nell'Apc. Solo quando il thread è in stato alterabile, si verifica se la coda Apc ha bisogno di eseguire funzioni registrate.
ps: è proprio perché non si sa quale thread gestirà l'Apc, sembra che l'iniezione Apc a livello di Ring3 non sia così efficace come altre metodologie, tuttavia l'iniezione Apc a livello di Ring0 sembra piuttosto stabile. I test su xp e win10 sono stati successo, mentre su win7 l'iniezione nell'processo explorer ha sempre causato crash, dopo aver sistemato per molto tempo, ho scoperto che esplorando i thread dal retro in avanti non c'è crash Orz
int main() { ...... ThreadCount = ThreadIdVector.size(); for (INT i = ThreadCount - 1; i >= 0; i--) { UINT32 ThreadId = ThreadIdVector[i]; InjectDllByApc(ProcessId, ThreadId); } ...... } BOOL InjectDllByApc(IN UINT32 ProcessId, IN UINT32 ThreadId) { BOOL bOk = 0; HANDLE ThreadHandle = OpenThread(THREAD_ALL_ACCESS, FALSE, ThreadId); HANDLE ProcessHandle = OpenProcess(PROCESS_ALL_ACCESS, FALSE, ProcessId); UINT_PTR LoadLibraryAddress = 0; SIZE_T ReturnLength = 0; UINT32 DllFullPathLength = (strlen(DllFullPath) + 1); // Globale, richiedere memoria una volta if (DllFullPathBufferData == NULL) { // Richiesta di memoria DllFullPathBufferData = VirtualAllocEx(ProcessHandle, NULL, DllFullPathLength, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE); if (DllFullPathBufferData == NULL) { CloseHandle(ProcessHandle); CloseHandle(ThreadHandle); return FALSE; } } // Evitare che le operazioni di scrittura falliscano, scrivere di nuovo ogni volta bOk = WriteProcessMemory(ProcessHandle, DllFullPathBufferData, DllFullPath, strlen(DllFullPath) + 1, &ReturnLength); if (bOk == FALSE) { CloseHandle(ProcessHandle); CloseHandle(ThreadHandle); return FALSE; } LoadLibraryAddress = (UINT_PTR)GetProcAddress(GetModuleHandle(L"Kernel32.dll"), "LoadLibraryA"); if (LoadLibraryAddress == NULL) { CloseHandle(ProcessHandle); CloseHandle(ThreadHandle); return FALSE; } __try { QueueUserAPC((PAPCFUNC)LoadLibraryAddress, ThreadHandle, (UINT_PTR)DllFullPathBufferData); } __except (EXCEPTION_CONTINUE_EXECUTION) { } CloseHandle(ProcessHandle); CloseHandle(ThreadHandle); return TRUE; }
0x06. Modifica del registro
L'iniezione del registro può essere considerata un Hook globale, dopo tutto, ogni processo creato automaticamente chiama LoadLibrary per caricare il percorso Dll specificato nella voce del registro.
L'articolo di registro che ci interessa è: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows, dobbiamo impostare il valore del registro KeyValue = "Percorso Dll completo", LoadAppInit_Dlls = 1 (così il sistema utilizza questa voce del registro)
ps: Since the injected Dll is in the early stage of process creation, one must be particularly careful when using functions in the Dll, as some libraries may not have been loaded yet.
int main() { LSTATUS Status = 0; WCHAR* wzSubKey = L"SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Windows"; HKEY hKey = NULL; // Open the registry Status = RegOpenKeyExW(HKEY_LOCAL_MACHINE, // The main key to open wzSubKey, // Address of the name of the subkey to open 0, // Reserved, pass 0 KEY_ALL_ACCESS, // Opening method &hKey); // Handle of the returned subkey if (Status != ERROR_SUCCESS) { return 0; } WCHAR* wzValueName = L"AppInit_DLLs"; DWORD dwValueType = 0; UINT8 ValueData[MAX_PATH] = { 0 }; DWORD dwReturnLength = 0; // Query the registry Status = RegQueryValueExW(hKey, // Subkey handle wzValueName, // Name of the key value to be queried NULL, // Reserved &dwValueType, // Data type ValueData, // Key value &dwReturnLength); WCHAR wzDllFullPath[MAX_PATH] = { 0 }; GetCurrentDirectoryW(MAX_PATH, wzDllFullPath); #ifdef _WIN64 wcscat_s(wzDllFullPath, L"\\x64NormalDll.dll"); #else wcscat_s(wzDllFullPath, L"\\x86NormalDll.dll"); #endif // 设置键值 Status = RegSetValueExW(hKey, wzValueName, NULL, dwValueType, (CONST BYTE*)wzDllFullPath, (lstrlen(wzDllFullPath) + 1) * sizeof(WCHAR)); if (Status != ERROR_SUCCESS) { return 0; } wzValueName = L"LoadAppInit_DLLs"; DWORD dwLoadAppInit = 1; // Query the registry Status = RegQueryValueExW(hKey, wzValueName, NULL, &dwValueType, ValueData, &dwReturnLength); // 设置键值 Status = RegSetValueExW(hKey, wzValueName, NULL, dwValueType, (CONST BYTE*)&dwLoadAppInit, sizeof(DWORD)); if (Status != ERROR_SUCCESS) { return 0; } printf("Input Any Key To Resume\r\n"); getchar(); getchar(); // 恢复键值 dwLoadAppInit = 0; Status = RegQueryValueExW(hKey, wzValueName, NULL, &dwValueType, ValueData, &dwReturnLength); Status = RegSetValueExW(hKey, wzValueName, NULL, dwValueType, (CONST BYTE*)&dwLoadAppInit, sizeof(DWORD)); wzValueName = L"AppInit_DLLs"; ZeroMemory(wzDllFullPath, (lstrlen(wzDllFullPath) + 1) * sizeof(WCHAR)); Status = RegQueryValueExW(hKey, wzValueName, NULL, &dwValueType, ValueData, &dwReturnLength); Status = RegSetValueExW(hKey, wzValueName, NULL, dwValueType, (CONST BYTE*)wzDllFullPath, 0); return 0; }
0x07.挂钩窗口消息
挂钩窗口消息使用了MS提供的一个API接口SetWindowsHookEx,他的工作原理是给带窗口的目标进程的某个线程的某个消息挂钩上我们Dll导出的函数,一旦消息触发,则导出函数就会被调用。前面学习到的几种方法归根结底是调用了LoadLibrary,而这个方法并没有。
// 注入exe关键代码 给目标线程的指定消息上下钩,走进Dll导出函数 BOOL Inject(IN UINT32 ThreadId, OUT HHOOK& HookHandle) { HMODULE DllModule = LoadLibraryA(DllFullPath); FARPROC FunctionAddress = GetProcAddress(DllModule, "Sub_1"); HookHandle = SetWindowsHookEx(WH_KEYBOARD, (HOOKPROC)FunctionAddress, DllModule, ThreadId); if (HookHandle == NULL) { return FALSE; } return TRUE; } // Funzione di esportazione della libreria dinamica extern "C" __declspec(dllexport) VOID Sub_1() // Funzione di esportazione { MessageBox(0, 0, 0, 0); }
0x08. Implementazione remota manuale di LoadLibrary
Questo metodo è stato studiato da github chiamato ReflevtiveDllInjection, è diviso in due parti, exe e dll, che saranno descritte separatamente di seguito.
exe: Come programma di avvio dell'iniezione, richiede una sezione di memoria PAGE_EXECUTE_READWRITE nel processo target, scrive direttamente il Dll nel spazio di memoria del processo target nel formato di file, quindi ottiene l'offset della funzione di esportazione "LoadDllByOEP" nel file e utilizza CreateRemoteThread per far eseguire la funzione LoadDllByOEP nel processo target.
Dll: La funzione di esportazione più critica LoadDllByOEP, nella funzione, prima ottiene l'indirizzo della funzione NtFlushInstructionCache dall'esportazione del modulo ntdll.dll nel tabella degli esporti, l'indirizzo della funzione LoadLibraryA, GetProcAddress e VirtualAlloc dall'esportazione del modulo Kernel32.dll; quindi richiede una nuova memoria nella memoria del processo, copia la propria struttura PE nella memoria, poi corregge l'IAT e il blocco di reindirizzamento, infine chiama l'OEP del modulo e completa l'esecuzione manuale di LoadLibrary!
ps: Durante la scrittura del codice, fare riferimento al "Guida Ufficiale Windows PE", ho avuto una nuova comprensione dell'intera struttura PE. Ho la sindrome della forfora for, quindi ho messo tutto il codice qui. Ho un ciclo for强迫症。
// InjectDllByOEP.cpp : Definisce il punto di ingresso dell'applicazione console. // #include "stdafx.h" #include <Windows.h> #include <iostream> #include <TlHelp32.h> using namespace std; BOOL GrantPriviledge(WCHAR* PriviledgeName); UINT32 GetLoadDllByOEPOffsetInFile(PVOID DllBuffer); UINT32 RVAToOffset(UINT32 RVA, PIMAGE_NT_HEADERS NtHeader); BOOL GetProcessIdByProcessImageName(IN WCHAR* wzProcessImageName, OUT UINT32* TargetProcessId); HANDLE WINAPI LoadRemoteDll(HANDLE ProcessHandle, PVOID ModuleFileBaseAddress, UINT32 ModuleFileSize, LPVOID lParam); CHAR DllFullPath[MAX_PATH] = { 0 }; int main() { // Prima di tutto, ottenere i privilegi if (GrantPriviledge(SE_DEBUG_NAME) == FALSE) { printf("Errore di Concessione dei Privilegi\r\n"); } // Ottenere l'id del processo tramite il nome del processo UINT32 ProcessId = 0; GetCurrentDirectoryA(MAX_PATH, DllFullPath); #ifdef _WIN64 // GetProcessIdByProcessImageName(L"Taskmgr.exe", &ProcessId); GetProcessIdByProcessImageName(L"explorer.exe", &ProcessId); strcat_s(DllFullPath, "\\x64LoadRemoteDll.dll"); #else GetProcessIdByProcessImageName(L"notepad++.exe", &ProcessId); strcat_s(DllFullPath, "\\x86LoadRemoteDll.dll"); #endif // Ottenere l'handle del dll HANDLE FileHandle = CreateFileA(DllFullPath, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); if (FileHandle == INVALID_HANDLE_VALUE) { printf("Errore di Apertura del File\r\n"); return 0; } // Ottenere la lunghezza del file dll UINT32 FileSize = GetFileSize(FileHandle, NULL); if (FileSize == INVALID_FILE_SIZE || FileSize == 0) { printf("Get File Size Error\r\n"); CloseHandle(FileHandle); return 0; } // Richiede memoria, salva PVOID FileData = HeapAlloc(GetProcessHeap(), 0, FileSize); if (FileData == NULL) { printf("HeapAlloc Error\r\n"); CloseHandle(FileHandle); return 0; } DWORD ReturnLength = 0; BOOL bOk = ReadFile(FileHandle, FileData, FileSize, &ReturnLength, NULL); CloseHandle(FileHandle); if (bOk == FALSE) { printf("ReadFile Error\r\n"); HeapFree(GetProcessHeap(), 0, FileData); return 0; } HANDLE ProcessHandle = OpenProcess(PROCESS_ALL_ACCESS, FALSE, ProcessId); if (ProcessHandle == NULL) { printf("OpenProcess Error\r\n"); HeapFree(GetProcessHeap(), 0, FileData); return 0; } // Esegue la funzione di esportazione DllLoadDllByOEP nel Dll, permettendo al processo di destinazione di implementare la funzione LoadLibrary HANDLE ThreadHandle = LoadRemoteDll(ProcessHandle, FileData, FileSize, NULL); if (ThreadHandle == NULL) { goto _Clear; } WaitForSingleObject(ThreadHandle, INFINITE); _Clear: if (FileData) { HeapFree(GetProcessHeap(), 0, FileData); } if (ProcessHandle) { CloseHandle(ProcessHandle); } return 0; } /************************************************************************ * Nome: LoadRemoteDll * Param: ProcessHandle Handle del processo (IN) * Param: ModuleBaseAddress Indirizzo di base del modulo * Param: ModuleLength Dimensione del modulo nel file * Param: lParam Handle del modulo * Ret: HANDLE * Inserisce Dll nella memoria del processo di destinazione in formato file ed esegue la funzione di esportazione DllLoadDllByOEP ************************************************************************/ HANDLE WINAPI LoadRemoteDll(HANDLE ProcessHandle, PVOID ModuleFileBaseAddress, UINT32 ModuleFileSize, LPVOID lParam) { HANDLE ThreadHandle = NULL; __try { if (ProcessHandle == NULL || ModuleFileBaseAddress == NULL || ModuleFileSize == 0) { return NULL; } // Offset della funzione esportata rispetto a ModuelBaseAddress UINT32 FunctionOffset = GetLoadDllByOEPOffsetInFile(ModuleFileBaseAddress); if (FunctionOffset == 0) { return NULL; } // Richiede memoria nel processo target PVOID RemoteBufferData = VirtualAllocEx(ProcessHandle, NULL, ModuleFileSize, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE); if (RemoteBufferData == NULL) { return NULL; } // Scrivi il file Dll nella memoria dello spazio di lavoro del processo target BOOL bOk = WriteProcessMemory(ProcessHandle, RemoteBufferData, ModuleFileBaseAddress, ModuleFileSize, NULL); if (bOk == FALSE) { return NULL; } // Esegui Dll con formato di file in LoadDllByOEP del Dll LPTHREAD_START_ROUTINE RemoteThreadCallBack = (LPTHREAD_START_ROUTINE)((PUINT8)RemoteBufferData + FunctionOffset); ThreadHandle = CreateRemoteThread(ProcessHandle, NULL, 1024 * 1024, RemoteThreadCallBack, lParam, 0, NULL); } __except (EXCEPTION_EXECUTE_HANDLER) { ThreadHandle = NULL; } return ThreadHandle; } /************************************************************************ * Nome: LoadRemoteDll * Param: ProcessHandle gestore del processo * Ret: HANDLE * Ottenere l'offset di LoadDllByOEP nel file Dll ************************************************************************/ UINT32 GetLoadDllByOEPOffsetInFile(PVOID DllBuffer) { UINT_PTR BaseAddress = (UINT_PTR)DllBuffer; PIMAGE_DOS_HEADER DosHeader = NULL; PIMAGE_NT_HEADERS NtHeader = NULL; DosHeader = (PIMAGE_DOS_HEADER)BaseAddress; NtHeader = (PIMAGE_NT_HEADERS)((PUINT8)BaseAddress + DosHeader->e_lfanew); /* #define IMAGE_NT_OPTIONAL_HDR32_MAGIC 0x10b #define IMAGE_NT_OPTIONAL_HDR64_MAGIC 0x20b #define IMAGE_ROM_OPTIONAL_HDR_MAGIC 0x107 */ if (NtHeader->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR32_MAGIC) // pe32 { } else if (NtHeader->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR64_MAGIC) // pe64 { } else { return 0; } UINT32 ExportDirectoryRVA = NtHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress; PIMAGE_EXPORT_DIRECTORY ExportDirectory = (PIMAGE_EXPORT_DIRECTORY)((PUINT8)BaseAddress + RVAToOffset(ExportDirectoryRVA, NtHeader)); UINT32 AddressOfNamesRVA = ExportDirectory->AddressOfNames; PUINT32 AddressOfNames = (PUINT32)((PUINT8)BaseAddress + RVAToOffset(AddressOfNamesRVA, NtHeader)); UINT32 AddressOfFunctionsRVA = ExportDirectory->AddressOfFunctions; PUINT32 AddressOfFunctions = (PUINT32)((PUINT8)BaseAddress + RVAToOffset(AddressOfFunctionsRVA, NtHeader)); UINT32 AddressOfNameOrdinalsRVA = ExportDirectory->AddressOfNameOrdinals; PUINT16 AddressOfNameOrdinals = (PUINT16)((PUINT8)BaseAddress + RVAToOffset(AddressOfNameOrdinalsRVA, NtHeader)); for (UINT32 i = 0; i < ExportDirectory->NumberOfFunctions; i++) { CHAR* ExportFunctionName = (CHAR*)((PUINT8)BaseAddress + RVAToOffset(*AddressOfNames, NtHeader)); if (strstr(ExportFunctionName, "LoadDllByOEP") != NULL) { UINT16 ExportFunctionOrdinals = AddressOfNameOrdinals[i]; return RVAToOffset(AddressOfFunctions[ExportFunctionOrdinals], NtHeader); } } return 0; } /************************************************************************ * Nome: RVAToOffset * Param: RVA offset nella memoria * Param: NtHeader intestazione Nt * Ret: UINT32 * Convertimento dell'offset nella memoria in offset del file ************************************************************************/ UINT32 RVAToOffset(UINT32 RVA, PIMAGE_NT_HEADERS NtHeader) { UINT32 i = 0; PIMAGE_SECTION_HEADER SectionHeader = NULL; SectionHeader = IMAGE_FIRST_SECTION(NtHeader); if (RVA < SectionHeader[0].PointerToRawData) { return RVA; } for (i = 0; i < NtHeader->FileHeader.NumberOfSections; i++) { if (RVA >= SectionHeader[i].VirtualAddress && RVA < (SectionHeader[i].VirtualAddress + SectionHeader[i].SizeOfRawData)) { return (RVA - SectionHeader[i].VirtualAddress + SectionHeader[i].PointerToRawData); } } return 0; } /************************************************************************ * Nome: GetProcessIdByProcessImageName * Param: wzProcessImageName Nome dell'immagine del processo (IN) * Param: TargetProcessId Id del processo (OUT) * Ret : BOOLEAN * Ottiene l'Id del processo tramite il nome dell'immagine del processo utilizzando le funzioni ToolHelp series ************************************************************************/ BOOL GetProcessIdByProcessImageName(IN WCHAR* wzProcessImageName, OUT UINT32* TargetProcessId) { HANDLE ProcessSnapshotHandle = NULL; PROCESSENTRY32 ProcessEntry32 = { 0 }; ProcessEntry32.dwSize = sizeof(PROCESSENTRY32); // Inizializza la struttura PROCESSENTRY32 ProcessSnapshotHandle = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0); // Fornisce uno snapshot di tutti i processi del sistema if (ProcessSnapshotHandle == INVALID_HANDLE_VALUE) { return FALSE; } Process32First(ProcessSnapshotHandle, &ProcessEntry32); // Trova il primo do { if (lstrcmpi(ProcessEntry32.szExeFile, wzProcessImageName) == 0) // Senza distinzione tra maiuscole e minuscole { *TargetProcessId = ProcessEntry32.th32ProcessID; break; } } while (Process32Next(ProcessSnapshotHandle, &ProcessEntry32)); CloseHandle(ProcessSnapshotHandle); ProcessSnapshotHandle = NULL; return TRUE; } /************************************************************************ * Name : GrantPriviledge * Param: PriviledgeName il privilegio da elevare * Ret : BOOLEAN * Eleva i privilegi desiderati ************************************************************************/ BOOL GrantPriviledge(WCHAR* PriviledgeName) { TOKEN_PRIVILEGES TokenPrivileges, OldPrivileges; DWORD dwReturnLength = sizeof(OldPrivileges); HANDLE TokenHandle = NULL; LUID uID; // Apri il token di privilegi if (!OpenThreadToken(GetCurrentThread(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, FALSE, &TokenHandle)) { if (GetLastError() != ERROR_NO_TOKEN) { return FALSE; } if (!OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &TokenHandle)) { return FALSE; } } if (!LookupPrivilegeValue(NULL, PriviledgeName, &uID)) // 通过权限名称查找uID { CloseHandle(TokenHandle); return FALSE; } TokenPrivileges.PrivilegeCount = 1; // 要提升的权限个数 TokenPrivileges.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED; // 动态数组,数组大小根据Count的数目 TokenPrivileges.Privileges[0].Luid = uID; // 在这里我们进行调整权限 if (!AdjustTokenPrivileges(TokenHandle, FALSE, &TokenPrivileges, sizeof(TOKEN_PRIVILEGES), &OldPrivileges, &dwReturnLength)) { CloseHandle(TokenHandle); return FALSE; } // 成功了 CloseHandle(TokenHandle); return TRUE; } // LoadRemoteDll.h #include <Windows.h> #include <intrin.h> #ifdef LOADREMOTEDLL_EXPORTS #define LOADREMOTEDLL_API __declspec(dllexport) #else #define LOADREMOTEDLL_API __declspec(dllimport) #endif #define KERNEL32DLL_HASH 0x6A4ABC5B #define NTDLLDLL_HASH 0x3CFA685D #define LOADLIBRARYA_HASH 0xEC0E4E8E #define GETPROCADDRESS_HASH 0x7C0DFCAA #define VIRTUALALLOC_HASH 0x91AFCA54 #define NTFLUSHINSTRUCTIONCACHE_HASH 0x534C0AB8 #define IMAGE_REL_BASED_ARM_MOV32A 5 #define IMAGE_REL_BASED_ARM_MOV32T 7 #define HASH_KEY 13 #pragma intrinsic( _rotr ) __forceinline UINT32 ror(UINT32 d) { return _rotr(d, HASH_KEY); } __forceinline UINT32 hash(char * c) { register UINT32 h = 0; do { h = ror(h); h += *c; } while (*++c); return h; } ////////////////////////////////////////////////////////////////////////// typedef struct _UNICODE_STRING { USHORT Length; USHORT MaximumLength; PWSTR Buffer; }{UNICODE_STRING, *PUNICODE_STRING; typedef struct _PEB_LDR_DATA_WIN7_X64 { UINT32 Length; UINT8 Initialized; UINT8 _PADDING0_[0x3]; PVOID SsHandle; LIST_ENTRY InLoadOrderModuleList; LIST_ENTRY InMemoryOrderModuleList; LIST_ENTRY InInitializationOrderModuleList; PVOID EntryInProgress; UINT8 ShutdownInProgress; UINT8 _PADDING1_[0x7]; PVOID ShutdownThreadId; }{PEB_LDR_DATA_WIN7_X64, *PPEB_LDR_DATA_WIN7_X64; typedef struct _PEB_LDR_DATA_WINXP_X86 { UINT32 Length; UINT8 Initialized; UINT8 _PADDING0_[0x3]; PVOID SsHandle; LIST_ENTRY InLoadOrderModuleList; LIST_ENTRY InMemoryOrderModuleList; LIST_ENTRY InInitializationOrderModuleList; PVOID EntryInProgress; PEB_LDR_DATA_WINXP_X86, *PPEB_LDR_DATA_WINXP_X86; #ifdef _WIN64 #define PPEB_LDR_DATA PEB_LDR_DATA_WIN7_X64 #define PEB_LDR_DATA PEB_LDR_DATA_WIN7_X64 #else #define PPEB_LDR_DATA PPEB_LDR_DATA_WINXP_X86 #define PEB_LDR_DATA PEB_LDR_DATA_WINXP_X86 #endif typedef struct _CURDIR { UNICODE_STRING DosPath; HANDLE Handle; } CURDIR, *PCURDIR; typedef struct _RTL_USER_PROCESS_PARAMETERS_WINXP_X86 { UINT32 MaximumLength; UINT32 Length; UINT32 Flags; UINT32 DebugFlags; HANDLE ConsoleHandle; UINT32 ConsoleFlags; HANDLE StandardInput; HANDLE StandardOutput; HANDLE StandardError; CURDIR CurrentDirectory; // ProcessParameters UNICODE_STRING DllPath; // ProcessParameters UNICODE_STRING ImagePathName; // ProcessParameters UNICODE_STRING CommandLine; // ProcessParameters PVOID Environment; UINT32 StartingX; UINT32 StartingY; UINT32 CountX; UINT32 CountY; UINT32 CountCharsX; UINT32 CountCharsY; UINT32 FillAttribute; UINT32 WindowFlags; UINT32 ShowWindowFlags; UNICODE_STRING WindowTitle; UNICODE_STRING DesktopInfo; UNICODE_STRING ShellInfo; UNICODE_STRING RuntimeData; UINT32 CurrentDirectores[8]; } RTL_USER_PROCESS_PARAMETERS_WINXP_X86, *PRTL_USER_PROCESS_PARAMETERS_WINXP_X86; typedef struct _RTL_USER_PROCESS_PARAMETERS_WIN7_X64 { UINT32 MaximumLength; UINT32 Length; UINT32 Flags; UINT32 DebugFlags; HANDLE ConsoleHandle; UINT32 ConsoleFlags; HANDLE StandardInput; HANDLE StandardOutput; HANDLE StandardError; CURDIR CurrentDirectory; // ProcessParameters UNICODE_STRING DllPath; // ProcessParameters UNICODE_STRING ImagePathName; // ProcessParameters UNICODE_STRING CommandLine; // ProcessParameters PVOID Environment; UINT32 StartingX; UINT32 StartingY; UINT32 CountX; UINT32 CountY; UINT32 CountCharsX; UINT32 CountCharsY; UINT32 FillAttribute; UINT32 WindowFlags; UINT32 ShowWindowFlags; UNICODE_STRING WindowTitle; UNICODE_STRING DesktopInfo; UNICODE_STRING ShellInfo; UNICODE_STRING RuntimeData; UINT32 CurrentDirectores[8]; UINT64 EnvironmentSize; UINT64 EnvironmentVersion; }RTL_USER_PROCESS_PARAMETERS_WIN7_X64, *PRTL_USER_PROCESS_PARAMETERS_WIN7_X64; #ifdef _WIN64 #define PRTL_USER_PROCESS_PARAMETERS PRTL_USER_PROCESS_PARAMETERS_WIN7_X64 #define RTL_USER_PROCESS_PARAMETERS RTL_USER_PROCESS_PARAMETERS_WIN7_X64 #else #define PRTL_USER_PROCESS_PARAMETERS PRTL_USER_PROCESS_PARAMETERS_WINXP_X86 #define RTL_USER_PROCESS_PARAMETERS RTL_USER_PROCESS_PARAMETERS_WINXP_X86 #endif #define GDI_HANDLE_BUFFER_SIZE32 34 #define GDI_HANDLE_BUFFER_SIZE64 60 #ifndef _WIN64 #define GDI_HANDLE_BUFFER_SIZE GDI_HANDLE_BUFFER_SIZE32 #else #define GDI_HANDLE_BUFFER_SIZE GDI_HANDLE_BUFFER_SIZE64 #endif typedef UINT32 GDI_HANDLE_BUFFER[GDI_HANDLE_BUFFER_SIZE]; // PEB结构 typedef struct _PEB { BOOLEAN InheritedAddressSpace; BOOLEAN ReadImageFileExecOptions; BOOLEAN BeingDebugged; union { BOOLEAN BitField; struct { BOOLEAN ImageUsesLargePages : 1; BOOLEAN IsProtectedProcess : 1; BOOLEAN IsLegacyProcess : 1; BOOLEAN IsImageDynamicallyRelocated : 1; BOOLEAN SkipPatchingUser32Forwarders : 1; BOOLEAN IsPackagedProcess : 1; BOOLEAN IsAppContainer : 1; BOOLEAN SpareBits : 1; }; }; HANDLE Mutant; PVOID ImageBaseAddress; PPEB_LDR_DATA Ldr; PRTL_USER_PROCESS_PARAMETERS ProcessParameters; PVOID SubSystemData; PVOID ProcessHeap; PRTL_CRITICAL_SECTION FastPebLock; PVOID AtlThunkSListPtr; PVOID IFEOKey; union { UINT32 CrossProcessFlags; struct { UINT32 ProcessInJob : 1; UINT32 ProcessInitializing : 1; UINT32 ProcessUsingVEH : 1; UINT32 ProcessUsingVCH : 1; UINT32 ProcessUsingFTH : 1; UINT32 ReservedBits0 : 27; }; UINT32 EnvironmentUpdateCount; }; union { PVOID KernelCallbackTable; PVOID UserSharedInfoPtr; }; UINT32 SystemReserved[1]; UINT32 AtlThunkSListPtr32; PVOID ApiSetMap; UINT32 TlsExpansionCounter; PVOID TlsBitmap; UINT32 TlsBitmapBits[2]; PVOID ReadOnlySharedMemoryBase; PVOID HotpatchInformation; PVOID* ReadOnlyStaticServerData; PVOID AnsiCodePageData; PVOID OemCodePageData; PVOID UnicodeCaseTableData; UINT32 NumberOfProcessors; UINT32 NtGlobalFlag; LARGE_INTEGER CriticalSectionTimeout; SIZE_T HeapSegmentReserve; SIZE_T HeapSegmentCommit; SIZE_T HeapDeCommitTotalFreeThreshold; SIZE_T HeapDeCommitFreeBlockThreshold; UINT32 NumberOfHeaps; UINT32 MaximumNumberOfHeaps; PVOID* ProcessHeaps; PVOID GdiSharedHandleTable; PVOID ProcessStarterHelper; UINT32 GdiDCAttributeList; PRTL_CRITICAL_SECTION LoaderLock; UINT32 OSMajorVersion; UINT32 OSMinorVersion; UINT16 OSBuildNumber; UINT16 OSCSDVersion; UINT32 OSPlatformId; UINT32 ImageSubsystem; UINT32 ImageSubsystemMajorVersion; UINT32 ImageSubsystemMinorVersion; UINT_PTR ImageProcessAffinityMask; GDI_HANDLE_BUFFER GdiHandleBuffer; PVOID PostProcessInitRoutine; PVOID TlsExpansionBitmap; UINT32 TlsExpansionBitmapBits[32]; UINT32 SessionId; ULARGE_INTEGER AppCompatFlags; ULARGE_INTEGER AppCompatFlagsUser; PVOID pShimData; PVOID AppCompatInfo; UNICODE_STRING CSDVersion; PVOID ActivationContextData; PVOID ProcessAssemblyStorageMap; PVOID SystemDefaultActivationContextData; PVOID SystemAssemblyStorageMap; SIZE_T MinimumStackCommit; PVOID* FlsCallback; LIST_ENTRY FlsListHead; PVOID FlsBitmap; UINT32 FlsBitmapBits[FLS_MAXIMUM_AVAILABLE / (sizeof(UINT32) * 8)]; UINT32 FlsHighIndex; PVOID WerRegistrationData; PVOID WerShipAssertPtr; PVOID pContextData; PVOID pImageHeaderHash; union { UINT32 TracingFlags; struct { UINT32 HeapTracingEnabled : 1; UINT32 CritSecTracingEnabled : 1; UINT32 LibLoaderTracingEnabled : 1; UINT32 SpareTracingBits : 29; }; }; UINT64 CsrServerReadOnlySharedMemoryBase; } PEB, *PPEB; // Ldr 三根链表结构 typedef struct _LDR_DATA_TABLE_ENTRY { LIST_ENTRY InLoadOrderLinks; LIST_ENTRY InMemoryOrderLinks; LIST_ENTRY InInitializationOrderLinks; PVOID DllBase; PVOID EntryPoint; UINT32 SizeOfImage; UNICODE_STRING FullDllName; UNICODE_STRING BaseDllName; UINT32 Flags; UINT16 LoadCount; UINT16 TlsIndex; union { LIST_ENTRY HashLinks; struct { PVOID SectionPointer; UINT32 CheckSum; }; }; union { struct { UINT32 TimeDateStamp; }; struct { PVOID LoadedImports; }; }; struct _ACTIVATION_CONTEXT * EntryPointActivationContext; PVOID PatchInformation; } LDR_DATA_TABLE_ENTRY, *PLDR_DATA_TABLE_ENTRY; typedef const struct _LDR_DATA_TABLE_ENTRY *PCLDR_DATA_TABLE_ENTRY; LOADREMOTEDLL_API UINT_PTR WINAPI LoadDllByOEP(PVOID lParam); // LoadRemoteDll.cpp // LoadRemoteDll.cpp : Definisce le funzioni di esportazione dell'applicazione DLL. // #include "stdafx.h" #include "LoadRemoteDll.h" #pragma intrinsic(_ReturnAddress) __declspec(noinline) UINT_PTR caller() { return (UINT_PTR)_ReturnAddress(); // #include <intrin.h> } typedef HMODULE (WINAPI * pfnLoadLibraryA)(LPCSTR lpLibFileName); typedef FARPROC (WINAPI * pfnGetProcAddress)(HMODULE hModule, LPCSTR lpProcName); typedef LPVOID (WINAPI * pfnVirtualAlloc)(LPVOID lpAddress, SIZE_T dwSize, DWORD flAllocationType, DWORD flProtect); typedef LONG // NTSTATUS (NTAPI * pfnNtFlushInstructionCache)(HANDLE ProcessHandle, PVOID BaseAddress, SIZE_T Length); typedef BOOL (APIENTRY * pfnDllMain)(HMODULE hModule, DWORD ul_reason_for_call, LPVOID lpReserved); LOADREMOTEDLL_API UINT_PTR WINAPI LoadDllByOEP(PVOID lParam) { UINT_PTR LibraryAddress = 0; PIMAGE_DOS_HEADER DosHeader = NULL; PIMAGE_NT_HEADERS NtHeader = NULL; pfnLoadLibraryA LoadLibraryAAddress = NULL; pfnGetProcAddress GetProcAddressAddress = NULL; pfnVirtualAlloc VirtualAllocAddress = NULL; pfnNtFlushInstructionCache NtFlushInstructionCacheAddress = NULL; LibraryAddress = caller(); // Ottenere l'indirizzo del passo successivo dell'istruzione, che in realtà è per ottenere l'indirizzo dell'istruzione corrente, fornendo un punto di partenza per la ricerca dell'intestazione PE in seguito DosHeader = (PIMAGE_DOS_HEADER)LibraryAddress; while (TRUE) { if (DosHeader->e_magic == IMAGE_DOS_SIGNATURE && DosHeader->e_lfanew >= sizeof(IMAGE_DOS_HEADER) && DosHeader->e_lfanew < 1024) { NtHeader = (PIMAGE_NT_HEADERS)((PUINT8)LibraryAddress + DosHeader->e_lfanew); if (NtHeader->Signature == IMAGE_NT_SIGNATURE) { break; } } LibraryAddress--; DosHeader = (PIMAGE_DOS_HEADER)LibraryAddress; } // Ottenere PEB #ifdef _WIN64 PPEB Peb = (PPEB)__readgsqword(0x60); #else PPEB Peb = (PPEB)__readfsdword(0x30); #endif PPEB_LDR_DATA Ldr = Peb->Ldr; // 1. Ottieni l'indirizzo della funzione dall'esportazione del Dll for (PLIST_ENTRY TravelListEntry = (PLIST_ENTRY)Ldr->InLoadOrderModuleList.Flink; TravelListEntry != &Ldr->InLoadOrderModuleList; // nodo testa vuoto TravelListEntry = TravelListEntry->Flink) { PLDR_DATA_TABLE_ENTRY LdrDataTableEntry = (PLDR_DATA_TABLE_ENTRY)TravelListEntry; UINT32 FunctionCount = 0; // WCHAR* DllName = (WCHAR*)LdrDataTableEntry->BaseDllName.Buffer; UINT_PTR DllName = (UINT_PTR)LdrDataTableEntry->BaseDllName.Buffer; UINT32 DllLength = LdrDataTableEntry->BaseDllName.Length; UINT_PTR DllBaseAddress = (UINT_PTR)LdrDataTableEntry->DllBase; DosHeader = (PIMAGE_DOS_HEADER)DllBaseAddress; NtHeader = (PIMAGE_NT_HEADERS)((PUINT8)DllBaseAddress + DosHeader->e_lfanew); ExportDataDirectory = (IMAGE_DATA_DIRECTORY)(NtHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT]); ExportDirectory = (PIMAGE_EXPORT_DIRECTORY)((PUINT8)DllBaseAddress + ExportDataDirectory.VirtualAddress); PUINT32 AddressOfFunctions = (PUINT32)((PUINT8)DllBaseAddress + ExportDirectory->AddressOfFunctions); PUINT32 AddressOfNames = (PUINT32)((PUINT8)DllBaseAddress + ExportDirectory->AddressOfNames); PUINT16 AddressOfNameOrdinals = (PUINT16)((PUINT8)DllBaseAddress + ExportDirectory->AddressOfNameOrdinals); UINT16 Ordinal = 0; UINT_PTR ExportFunctionAddress = 0; UINT32 HashValue = 0; // Convert the Dll name to a Hash value do { HashValue = ror((UINT32)HashValue); if (*((PUINT8)DllName) >= 'a') { HashValue += *((PUINT8)DllName) - 0x20; } else { HashValue += *((PUINT8)DllName); } DllName++; } while (--DllLength); if (HashValue == KERNEL32DLL_HASH) { FunctionCount = 3; for (INT i = 0; i < ExportDirectory->NumberOfFunctions; i++) { if (FunctionCount == 0) { break; } CHAR* szExportFunctionName = (CHAR*)((PUINT8)DllBaseAddress + AddressOfNames[i]); HashValue = hash(szExportFunctionName); if (HashValue == LOADLIBRARYA_HASH) { Ordinal = AddressOfNameOrdinals[i]; LoadLibraryAAddress = (pfnLoadLibraryA)((PUINT8)DllBaseAddress + AddressOfFunctions[Ordinal]); FunctionCount--; } else if (HashValue == GETPROCADDRESS_HASH) { Ordinal = AddressOfNameOrdinals[i]; GetProcAddressAddress = (pfnGetProcAddress)((PUINT8)DllBaseAddress + AddressOfFunctions[Ordinal]); FunctionCount--; } else if (HashValue == VIRTUALALLOC_HASH) { Ordinal = AddressOfNameOrdinals[i]; VirtualAllocAddress = (pfnVirtualAlloc)((PUINT8)DllBaseAddress + AddressOfFunctions[Ordinal]); FunctionCount--; } } } else if (HashValue == NTDLLDLL_HASH) { FunctionCount = 1; for (INT i = 0; i < ExportDirectory->NumberOfFunctions; i++) { if (FunctionCount == 0) { break; } CHAR* szExportFunctionName = (CHAR*)((PUINT8)DllBaseAddress + AddressOfNames[i]); HashValue = hash(szExportFunctionName); if (HashValue == NTFLUSHINSTRUCTIONCACHE_HASH) { Ordinal = AddressOfNameOrdinals[i]; NtFlushInstructionCacheAddress = (pfnNtFlushInstructionCache)((PUINT8)DllBaseAddress + AddressOfFunctions[Ordinal]); FunctionCount--; } } } if (LoadLibraryAAddress != NULL && GetProcAddressAddress != NULL && VirtualAllocAddress != NULL && NtFlushInstructionCacheAddress != NULL) { break; } } // 2. Richiesta di memoria, ricarica del nostro Dll // Aggiornamento di DosHeader e NtHeader di nuovo DosHeader = (PIMAGE_DOS_HEADER)LibraryAddress; NtHeader = (PIMAGE_NT_HEADERS)((PUINT8)LibraryAddress + DosHeader->e_lfanew); // Richiesta di memoria rinnovata (SizeOfImage è la dimensione del PE nella memoria) /* _asm { int 3; } */ // Questa è una puntatrice di testa richiesto autonomamente che non può essere spostata a caso, utilizzata con una variabile per sostituirla UINT_PTR NewBaseAddress = (UINT_PTR)VirtualAllocAddress(NULL, NtHeader->OptionalHeader.SizeOfImage, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE); UINT_PTR OldPtr = LibraryAddress; UINT_PTR BasePtr = NewBaseAddress; // 2.1 Prima copia dell'intestazione + tabella dei settori UINT32 SizeOfHeaders = NtHeader->OptionalHeader.SizeOfHeaders; while (SizeOfHeaders--) { *(PUINT8)BasePtr++ = *(PUINT8)OldPtr++; } // memcpy((PVOID)NewBaseAddress, (PVOID)LibraryAddress, NtHeader->OptionalHeader.SizeOfHeaders); /* PIMAGE_SECTION_HEADER SectionHeader = (PIMAGE_SECTION_HEADER)((PUINT8)&NtHeader->OptionalHeader + NtHeader->FileHeader.SizeOfOptionalHeader); UINT32 NumberOfSections = NtHeader->FileHeader.NumberOfSections; while (NumberOfSections--) { UINT_PTR NewSectionAddress = (UINT_PTR)((PUINT8)NewBaseAddress + SectionHeader->VirtualAddress); UINT_PTR OldSectionAddress = (UINT_PTR)((PUINT8)LibraryAddress + SectionHeader->PointerToRawData); UINT32 SizeOfRawData = SectionHeader->SizeOfRawData; while (SizeOfRawData--) { *(PUINT8)NewSectionAddress++ = *(PUINT8)OldSectionAddress++; } SectionHeader = (PIMAGE_SECTION_HEADER)((PUINT8)SectionHeader + sizeof(IMAGE_SECTION_HEADER)); } */ // 2.2 Copia della sezione PIMAGE_SECTION_HEADER SectionHeader = IMAGE_FIRST_SECTION(NtHeader); for (INT i = 0; i < NtHeader->FileHeader.NumberOfSections; i++) { if (SectionHeader[i].VirtualAddress == 0 || SectionHeader[i].SizeOfRawData == 0) // Il segmento non contiene dati { continue; } // Posizionamento del segmento nella memoria UINT_PTR NewSectionAddress = (UINT_PTR)((PUINT8)NewBaseAddress + SectionHeader[i].VirtualAddress); UINT_PTR OldSectionAddress = (UINT_PTR)((PUINT8)LibraryAddress + SectionHeader[i].PointerToRawData); // Copia i dati del segmento nella memoria virtuale UINT32 SizeOfRawData = SectionHeader[i].SizeOfRawData; while (SizeOfRawData--) { *(PUINT8)NewSectionAddress++ = *(PUINT8)OldSectionAddress++; } //memcpy(SectionAddress, (PVOID)((PUINT8)LibraryAddress + SectionHeader[i].PointerToRawData), SectionHeader[i].SizeOfRawData); } // 2.3 Correzione tabella di importazione (IAT) IMAGE_DATA_DIRECTORY ImportDataDirectory = (IMAGE_DATA_DIRECTORY)(NtHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT]); PIMAGE_IMPORT_DESCRIPTOR ImportDescriptor = (PIMAGE_IMPORT_DESCRIPTOR)((PUINT8)NewBaseAddress + ImportDataDirectory.VirtualAddress); /* _asm { int 3; } */ /* while (ImportDescriptor->Characteristics != 0) { PIMAGE_THUNK_DATA FirstThunk = (PIMAGE_THUNK_DATA)((PUINT8)NewBaseAddress + ImportDescriptor->FirstThunk); PIMAGE_THUNK_DATA OriginalFirstThunk = (PIMAGE_THUNK_DATA)((PUINT8)NewBaseAddress + ImportDescriptor->OriginalFirstThunk); // Ottieni il nome del modulo importato // char szModuleName[MAX_PATH] = { 0 }; PCHAR ModuleName = (PCHAR)((PUINT8)NewBaseAddress + ImportDescriptor->Name); HMODULE Dll = LoadLibraryAAddress(ModuleName); UINT_PTR IndirizzoFunzione = 0; for (INT i = 0; OriginalFirstThunk[i].u1.Function != 0; i++) { if (IMAGE_SNAP_BY_ORDINAL(OriginalFirstThunk[i].u1.Ordinal)) { FunctionAddress = (UINT_PTR)GetProcAddressAddress(Dll, MAKEINTRESOURCEA((IMAGE_ORDINAL(OriginalFirstThunk[i].u1.Ordinal)))); } else { PIMAGE_IMPORT_BY_NAME ImageImportByName = (PIMAGE_IMPORT_BY_NAME)((PUINT8)NewBaseAddress + OriginalFirstThunk[i].u1.AddressOfData); FunctionAddress = (UINT_PTR)GetProcAddressAddress(Dll, (CHAR*)ImageImportByName->Name); // Ottenere l'indirizzo della funzione tramite il nome } FirstThunk[i].u1.Funzione = IndirizzoFunzione; } ImportDescriptor = (PIMAGE_IMPORT_DESCRIPTOR)((PUINT8)ImportDescriptor + sizeof(IMAGE_IMPORT_DESCRIPTOR)); } */ for (INT i = 0; ImportDescriptor[i].Name != NULL; i++) { // Caricamento della libreria dinamica importata HMODULE Dll = LoadLibraryAIndirizzo((const CHAR*)((PUINT8)NuovoIndirizzoBase + ImportDescriptor[i].Name)); PIMAGE_THUNK_DATA OriginalFirstThunk = (PIMAGE_THUNK_DATA)((PUINT8)NuovoIndirizzoBase + ImportDescriptor[i].OriginalFirstThunk); PIMAGE_THUNK_DATA FirstThunk = (PIMAGE_THUNK_DATA)((PUINT8)NuovoIndirizzoBase + ImportDescriptor[i].FirstThunk); UINT_PTR IndirizzoFunzione = 0; // Si esplora ogni funzione del modulo importato for (INT j = 0; OriginalFirstThunk[j].u1.Funzione; j++) { if (&OriginalFirstThunk[j] && IMAGE_SNAP_BY_ORDINAL(OriginalFirstThunk[j].u1.Ordinal)) { // Importazione numero---->Ecco come si trova l'indirizzo della funzione direttamente dalla tabella delle esportazioni di Dll // IndirizzoFunzione = (UINT_PTR)GetProcAddressIndirizzo(Dll, MAKEINTRESOURCEA((IMAGE_ORDINAL(OriginalFirstThunk[j].u1.Ordinal)))); // Rimuovendo il bit più significativo otteniamo l'indice DosHeader = (PIMAGE_DOS_HEADER)Dll; NtHeader = (PIMAGE_NT_HEADERS)((PUINT8)Dll + DosHeader->e_lfanew); PIMAGE_EXPORT_DIRECTORY ExportDirectory = (PIMAGE_EXPORT_DIRECTORY)((PUINT8)Dll + NtHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress); // Array RVA degli indirizzi delle funzioni esportate PUINT32 AddressOfFunctions = (PUINT32)((PUINT8)Dll + ExportDirectory->AddressOfFunctions); UINT16 Ordinal = IMAGE_ORDINAL(OriginalFirstThunk[j].u1.Ordinal - ExportDirectory->Base); // Numero di funzione esportata - Base(Valore di partenza del numero di funzione esportato) = Indice della funzione nell'elenco degli indirizzi delle funzioni FunctionAddress = (UINT_PTR)((PUINT8)Dll + AddressOfFunctions[Ordinal]); } else { // Importazione del nome PIMAGE_IMPORT_BY_NAME ImageImportByName = (PIMAGE_IMPORT_BY_NAME)((PUINT8)NewBaseAddress + OriginalFirstThunk[j].u1.AddressOfData); FunctionAddress = (UINT_PTR)GetProcAddressAddress(Dll, (CHAR*)ImageImportByName->Name); // Ottenere l'indirizzo della funzione tramite il nome } // Aggiorna IAT FirstThunk[j].u1.Function = FunctionAddress; } } // 2.4 Correggere la tabella di redirectione DosHeader = (PIMAGE_DOS_HEADER)LibraryAddress; NtHeader = (PIMAGE_NT_HEADERS)((PUINT8)LibraryAddress + DosHeader->e_lfanew); // UINT_PTR Delta = NewBaseAddress - NtHeader->OptionalHeader.ImageBase; IMAGE_DATA_DIRECTORY BaseRelocDataDirectory = (IMAGE_DATA_DIRECTORY)(NtHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_BASERELOC]); // Esistenza della tabella di redirectione if (BaseRelocDataDirectory.Size != 0) { PIMAGE_BASE_RELOCATION BaseRelocation = (PIMAGE_BASE_RELOCATION)((PUINT8)NewBaseAddress + BaseRelocDataDirectory.VirtualAddress); while (BaseRelocation->SizeOfBlock != 0) { typedef struct _IMAGE_RELOC { UINT16 Offset : 12; // I 12 bit inferiori --- offset UINT16 Type : 4; // I 4 bit superiori --- tipo } IMAGE_RELOC, *PIMAGE_RELOC; // Posizionarsi sul blocco di redirectione PIMAGE_RELOC RelocationBlock = (PIMAGE_RELOC)((PUINT8)BaseRelocation + sizeof(IMAGE_BASE_RELOCATION)); // Calcolare il numero di elementi di redirectione da correggere UINT32 NumberOfRelocations = (BaseRelocation->SizeOfBlock - sizeof(IMAGE_BASE_RELOCATION)) / sizeof(UINT16); for (INT i = 0; i < NumberOfRelocations; i++) { if (RelocationBlock[i].Type == IMAGE_REL_BASED_DIR64) { // 64 bit PUINT64 Address = (PUINT64)((PUINT8)NewBaseAddress + BaseRelocation->VirtualAddress + RelocationBlock[i].Offset); UINT64 Delta = (UINT64)NewBaseAddress - NtHeader->OptionalHeader.ImageBase; *Address += Delta; } else if (RelocationBlock[i].Type == IMAGE_REL_BASED_HIGHLOW) { // 32 bit PUINT32 Address = (PUINT32)((PUINT8)NewBaseAddress + BaseRelocation->VirtualAddress + (RelocationBlock[i].Offset)); UINT32 Delta = (UINT32)NewBaseAddress - NtHeader->OptionalHeader.ImageBase; *Address += Delta; } } // Passare alla prossima tabella di ricollocazione BaseRelocation = (PIMAGE_BASE_RELOCATION)((PUINT8)BaseRelocation + BaseRelocation->SizeOfBlock); } } // 3. Ottenere l'OEP del modulo UINT_PTR AddressOfEntryPoint = (UINT_PTR)((PUINT8)NewBaseAddress + NtHeader->OptionalHeader.AddressOfEntryPoint); NtFlushInstructionCacheAddress(INVALID_HANDLE_VALUE, NULL, 0); // Chiamata attraverso OEP per chiamare DllMain ((pfnDllMain)AddressOfEntryPoint)((HMODULE)NewBaseAddress, DLL_PROCESS_ATTACH, lParam); /* _asm { int 3; } */ return AddressOfEntryPoint; } // dllmain.cpp: definisce il punto di ingresso dell'applicazione DLL. #include "stdafx.h" BOOL APIENTRY DllMain( HMODULE hModule, DWORD ul_reason_for_call, LPVOID lpReserved ) { switch (ul_reason_for_call) { case DLL_PROCESS_ATTACH: { MessageBoxA(0, 0, 0, 0); break; } case DLL_THREAD_ATTACH: case DLL_THREAD_DETACH: case DLL_PROCESS_DETACH: break; } return TRUE; }
0x09. Riassunto
Forse ci sono metodi di iniezione Dll di livello Ring3 che non ho ancora imparato, come si dice, 'La strada è lunga e la marcia è difficile, cercherò in alto e in basso per cercare!'
Ecco l'indirizzo di download del codice: https://github.com/YouArekongqi/InjectCollection.git
Di seguito è riportato un riassunto della somma delle tecniche di iniezione Dll di livello Ring3 x86/x64 per Windows che l'editor ha introdotto agli utenti, sperando di essere utile!
Dichiarazione: il contenuto di questo articolo è stato tratto da Internet, il copyright è dell'autore originale, il contenuto è stato contribuito volontariamente dagli utenti di Internet e caricato autonomamente, il sito web non detiene il diritto di proprietà, non è stato editato manualmente e non assume responsabilità per le relative responsabilità legali. Se trovi contenuti sospetti di violazione del copyright, ti preghiamo di inviare una e-mail a: notice#oldtoolbag.com (al momento dell'invio dell'e-mail, sostituisci # con @) per segnalare, fornendo prove pertinenti. Una volta verificata, il sito web eliminerà immediatamente i contenuti sospetti di violazione del copyright.